Skip to main content

files in Python

 Files

1. Read file

    # Use open function to read the content of a file!
    # f = open('sample.txt', 'r')
    f = open('sample.txt'# by default the mode is r
    # data = f.read()
    data = f.read(5# reads first 5 characters from the file
    print(data)
    f.close()

O/P: avi

2. Readline 

    f = open('sample.txt')
    # read first line
    data = f.readline() 
    print(data)

    # Read second line
    data = f.readline() 
    print(data)

    # Read third line
    data = f.readline() 
    print(data)

    # Read fourth line... and so on...
    data = f.readline() 
    print(data)
    f.close()

O/P: ok i have done


what u required


i am done wiht y


ok what aare you doing


3. write

    f = open("copy.txt"'w')  #Write from start del privious all data
    f.write("plese help to me")
    f.close()

    f= open('copy.txt''a')  #add string at end 
    f.write("im waitning")
    f.close()

O/P: wihat was that im waitning im waitning

4. with open as f

    with  open('copy.txt''r'as f:  #close atomatic with fuction
        a= f.read()
    with open('copy.txt''w'as f:
        a= f.write("ok i have done")
    print(a)

O/P: 14

5. string present or not

    f = open('poems.txt')
    t = f.read()
    if 'twinkle' in t:
        print("Twinkle is present")
    else:
        print("Twinkle is not present")
    f.close()

O/P: Twinkle is present

6. high score store if not present in file

    def game():
        return 44675

    score = game()
    with open("hiscore.txt"as f:
        hiScoreStr = f.read()
        
    if hiScoreStr=='':
        with open("hiscore.txt""w"as f:
            f.write(str(score))

    elif int(hiScoreStr)<score :
        with open("hiscore.txt""w"as f:
            f.write(str(score))

O/P: 44675

7. create multipal file of tables


for i in range(221):
    with open(f"tables/Multiplication_table_of_{i}.txt"'w'as f:
        for j in range(111):
            f.write(f"{i}X{j}={i*j}")
            if j!=10:
                f.write('\n')

O/P: created file of table up to 20

8. replace specific word

    with open('sample1.txt'as f:
        content= f.read()

    content= content.replace('avi'"ytgjuuy")

    with open('sample1.txt''w'as f:
        f.write(content)

O/P:

9.  Replace multipal word by one word

    words = ["donkey""kaddu""mote"]

    with open("sample.txt"as f:
        content = f.read()


    for word in words:
        content = content.replace(word"$%^@$^#")
        with open("sample.txt""w"as f:
            f.write(content)

O/P:

10. check string present or not in file

    with open("log.txt"as f:
        content = f.read()

    if 'python' in content.lower():
        print("Yes python is present")
    else:
        print("No python is not present")

O/P: yes python is present

11. print line number on which python is present

content = True
i = 1
with open("log.txt"as f:
    while content:
        content = f.readline()
        if 'python' in content.lower():
            print(content)
            print(f"Yes python is present on line number {i}"
        i+=1

O/P: Yes python is present on line number 39

12.  copy from one file to another

with open("this.txt"as f:
    content = f.read()

with open("copy.txt"'w'as f:
    f.write(content)

O/P:

13. find if file are same or not

file1 = "log.txt"
file2 = "this.txt"

with open(file1as f:
    f1 = f.read()

with open(file2as f:
    f2= f.read()

if f1 == f2:
    print("Files are identical")
else:
    print("Files are not identical")

O/P: files are not identical

14. file to make empty

filename = "sample.txt"
with open(filename"w"as f:
    f.write("")

O/P:

15. rename file

import os

oldname = "sample2.txt"
newname = "renamed_by_python.txt"
with open(oldnameas f:
    content = f.read()

with open(newname"w"as f:
    f.write(content)

os.remove(oldname)

O/P:

16.

O/P:

1.

O/P:

1.

O/P:

1.

O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.O/P:

1.

Popular posts from this blog

Bagging and Boosting

  What is an Ensemble Method? The ensemble is a method used in the machine learning algorithm. In this method, multiple models or ‘weak learners’ are trained to rectify the same problem and integrated to gain desired results. Weak models combined rightly give accurate models. Bagging Bagging is an acronym for ‘Bootstrap Aggregation’ and is used to decrease the variance in the prediction model. Bagging is a parallel method that fits different, considered learners independently from each other, making it possible to train them simultaneously. Bagging generates additional data for training from the dataset. This is achieved by random sampling with replacement from the original dataset. Sampling with replacement may repeat some observations in each new training data set. Every element in Bagging is equally probable for appearing in a new dataset.  These multi datasets are used to train multiple models in parallel. The average of all the predictions from different ensemble models i...