Skip to main content

Windows 11 shortcut

 # to set the windows 10 right click context menu

reg add "HKCU\Software\Classes\CLSID\{86ca1aa0-34aa-4e8b-a509-50c905bae2a2}\InprocServer32" /f


paste this  command in cmd

# go back to windows 11 context menu

reg delete "HKCU\Software\Classes\CLSID\{86ca1aa0-34aa-4e8b-a509-50c905bae2a2}" /f

paste this command in cmd


Popular posts from this blog

cammand for installing library in python

 Command for installing in jupyter notebook:                pip install library_name                ex. pip install nump installing from anaconda prompt:           1. pip install numpy           2.   conda install -c conda-forge matplotlib search for conda command for matplotlib and go to official website. Installing from anaconda navigator easy. Somtime give error then open as administrator

spark-scala-python

 ############sparkcontest######33333 it is used in earlier spark 1.x //scala  import org.apache.spark.SparkConf     import org.apache.spark.SparkContext     val conf = new SparkConf().setAppName("first").setMaster("local[*]")     val sc = new SparkContext(conf) val rdd1 = sc.textFile("C:/workspace/data/txns") # python  from pyspark import SparkContext,SparkConf     conf = SparkConf().setAppName("first").setMaster("local[*])     sc = SparkContext(conf)      ## now days sparksession are used  ########range######### // in Scala val myRange = spark.range(1000).toDF("number") # in Python myRange = spark.range(1000).toDF("number") ###########where########## // in Scala val divisBy2 = myRange.where("number % 2 = 0") # in Python divisBy2 = myRange.where("number % 2 = 0") ###########read csv ########## // in Scala val flightData2015 = spark .read .option("inferSchema", "true") .o...

deploying Machine learning Model : pkl, Flask,postman

1)Create model and train          #  importing Librarys         import pandas as pd         import numpy as np         import matplotlib . pyplot as plt         import seaborn as sns         import requests         from pickle import dump , load         # Load Dataset         url = "http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"         names = [ "sepal_length" , "sepal_width" , "petal_length" , "petal_width" , "species" ]         # Loading Dataset         df = pd . read_csv ( url , names = names )         df . tail ( 11 )         df . columns         test = [         { 'sepal_length' : 5.1 , 'sepal_width' : 3.5 , 'peta...